Code: ME7T3

IV B.Tech - I Semester - Regular/Supplementary Examinations October - 2018

FINITE ELEMENT METHODS
 (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Differentiate isotropic and orthotropic materials.
b) State the principle of minimum potential energy.
c) Discuss penalty approach for handling boundary condition.
d) Explain the concept of global numbering.
e) Discuss the different types of loading that act on a structure.
f) Mention the characteristics of shape function.
g) Explain about constant strain triangle.
h) Discuss Jacobian transformation matrix.
i) Mention the matrix relating the strains and nodal displacements for an axi symmetric triangular element
j) State the Fourier's law of heat conduction
k) Explain the governing equations for one dimensional heat conduction
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) In a plane strain problem, $\sigma_{x}=1360$ bar and $\sigma_{y}=-680$ bar, $v=0.3$ and $E=2 \times 10^{6}$ bar, find the value of the stress σ_{z}.

4 M
b) Using Rayleigh Ritz method find the displacement at the midpoint of the rod shown in the below Fig 1.

12 M

Fig 1.
3. Consider a load of $60 \times 10^{3} \mathrm{~N}$ is applied on the bar shown in the below Fig 2. Determine the displacement field, stress and support reactions in the body. Take $\mathrm{E}=20 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig 2.
4. Derive the Jacobian matrix for the quadrilateral element with the nodal coordinates $(0,0)(10,1)(10,8)$ and $(1,7)$ for the nodes $1,2,3$ and 4 respectively. Determine the determinant of the Jacobian at the nodes and at the centroid of the element.
5. a) Evaluate the shape functions $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} at the interior point P for the triangular element shown in the Fig 3.

Fig 3.
b) Determine the Jacobian transformation for the element shown in the Fig 4.

Fig 4.
6. a) An open ended steel cylinder shown in the below

Fig 5. Is subjected to an internal pressure of 5 MPa .
Find the deformed shape and distribution of principal stresses.

10 M

Fig 5.
b) Heat is generated in a large Wall $\left(\mathrm{K}=0.8 \mathrm{~W} / \mathrm{m} .{ }^{0} \mathrm{C}\right)$ at the rate of $4000 \mathrm{~W} / \mathrm{m}^{3}$. The plate is 25 cm thick. The outside surfaces of the plate is exposed to ambient air at $30^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $20 \mathrm{~W} / \mathrm{m}^{2}$. Determine the temperature distribution in the wall.

6 M

